Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models
نویسندگان
چکیده
[1] Stratospheric sulfate aerosol particles from strong volcanic eruptions produce significant transient cooling of the troposphere and warming of the lower stratosphere. The radiative impact of volcanic aerosols also produces a response that generally includes an anomalously positive phase of the Arctic Oscillation (AO) that is most pronounced in the boreal winter. The main atmospheric thermal and dynamical effects of eruptions typical of the past century persist for about two years after each eruption. In this paper we evaluate the volcanic responses in simulations produced by seven of the climate models included in the model intercomparison conducted as part of the preparation of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). We consider global effects as well as the regional circulation effects in the extratropical Northern Hemisphere focusing on the AO responses forced by volcanic eruptions. Specifically we analyze results from the IPCC historical runs that simulate the evolution of the circulation over the last part of the 19th century and the entire 20th century using a realistic time series of atmospheric composition (greenhouse gases and aerosols). In particular, composite anomalies over the two boreal winters following each of the nine largest low-latitude eruptions during the period 1860–1999 are computed for various tropospheric and stratospheric fields. These are compared when possible with observational data. The seven IPCC models we analyzed use similar assumptions about the amount of volcanic aerosols formed in the lower stratosphere following the volcanic eruptions that have occurred since 1860. All models produce tropospheric cooling and stratospheric warming as in observations. However, they display a considerable range of dynamic responses to volcanic aerosols. Nevertheless, some general conclusions can be drawn. The IPCC models tend to simulate a positive phase of the Arctic Oscillation in response to volcanic forcing similar to that typically observed. However, the associated dynamic perturbations and winter surface warming over Northern Europe and Asia in the post-volcano winters is much weaker in the models than in observations. The AR4 models also underestimate the variability and long-term trend of the AO. This deficiency affects high-latitude model predictions and may have a similar origin. This analysis allows us to better evaluate volcanic impacts in up-to-date climate models and to better quantify the model Arctic Oscillation sensitivity to external forcing. This potentially could lead to improving model climate predictions in the extratropical latitudes of the Northern Hemisphere.
منابع مشابه
Arctic oscillation response to the 1991 Pinatubo eruption in the SKYHI general circulation model with a realistic quasi-biennial oscillation
[1] Stratospheric aerosol clouds from large tropical volcanic eruptions can be expected to alter the atmospheric radiative balance for a period of up to several years. Observations following several previous major eruptions suggest that one effect of the radiative perturbations is to cause anomalies in the Northern Hemisphere extratropical winter tropospheric circulation that can be broadly cha...
متن کاملDynamic winter climate response to large tropical volcanic eruptions
[1] We have analyzed the mean climate response pattern following large tropical volcanic eruptions back to the beginning of the 17th century using a combination of proxybased reconstructions and modern instrumental records of cold-season surface air temperature. Warm anomalies occur throughout northern Eurasia, while cool anomalies cover northern Africa and the Middle East, extending all the wa...
متن کاملSimulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season.
A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO(2) concentrations alone are compared with observations for the reference interval 1965-2000. Surface air temper...
متن کاملStratospheric variability and trends in models used for the IPCC AR4
Atmosphere and ocean general circulation model (AOGCM) experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) are analyzed to better understand model variability and assess the importance of various forcing mechanisms on stratospheric trends during the 20th century. While models represent the climatology of the stratosphere reasonably well in comparison wit...
متن کاملAmplified Arctic climate change: What does surface albedo feedback have to do with it?
[1] A group of twelve IPCC fourth assessment report (AR4) climate models have Arctic (60N–90N) warmings that are, on average, 1.9 times greater than their global warmings at the time of CO2 doubling in 1%/year CO2 increase experiments. Forcings and feedbacks that impact the warming response are estimated for both Arctic and global regions based on standard model diagnostics. Fitting a zero-dime...
متن کامل